The global virtual power plant market size reached USD 2.1 Billion in 2024. Looking forward, IMARC Group expects the market to reach USD 13.9 Billion by 2033, exhibiting a growth rate (CAGR) of 22.25% during 2025-2033. Some of the key factors driving the market are the escalating need for sustainable energy sources, the advancement of energy management and control systems, and the rising adoption of electric vehicles (EVs).
Report Attribute
|
Key Statistics
|
---|---|
Base Year
|
2024
|
Forecast Years
|
2025-2033
|
Historical Years
|
2019-2024
|
Market Size in 2024
|
USD 2.1 Billion |
Market Forecast in 2033
|
USD 13.9 Billion |
Market Growth Rate 2025-2033 | 22.25% |
Growing Adoption of Renewable Energy Sources
The increasing adoption of sustainable or renewable energy sources is catalyzing the virtual power plant demand. The increase in solar panel and wind turbine installations is enhancing the decentralized energy generation model. The rise in distributed energy resources (DERs) is leading to a demand for effective management and optimization of these assets. VPPs play a vital role in unlocking the potential of renewables by facilitating smooth integration, collection, and management of various DERs, thus improving grid stability and dependability. Moreover, several companies are partnering with other stakeholders to improve their sources of renewable energy. On 6 September 2023, ABB Motion and WindESCo, signed a strategic partnership, where ABB has acquired a minority stake in the company through its venture capital unit, ABB Technology Ventures (ATV). US-based WindESCo is the leading analytics software provider for improving the performance and reliability of wind turbines. Leveraging WindESCo’ solutions, the investment will strengthen ABB’s position as a key enabler of a low carbon society and its position in the renewable power generation sector.
Rising Shift Towards Grid Decentralization
The rising shift towards grid decentralization is propelling the virtual power plant market growth. Grid decentralization is fostering greater incorporation of renewable energy sources into the grid. In addition, solar panels and wind turbines are being installed in various locations that benefit in contributing to a distributed energy generation system. Moreover, the trend of grid decentralization is facilitating enhanced grid resilience. This is particularly important for dealing with climate-related challenges and natural disasters. On 4 August 2022, Tesla and PG&E announced a plan to build California’s largest virtual power plant as these plants are a valuable resource for supporting grid reliability and an essential part of California’s clean energy future.
Increasing Development of Advanced Energy Management and Control Systems
The need for virtual power plants is stimulated by the increasing development of sophisticated energy management and control systems. The capacity of these systems to simultaneously aggregate, analyze, and optimize dispersed energy resources is growing. VPPs are able to react to variations in the supply and demand for energy more effectively because of this ongoing progress. Furthermore, by integrating machine learning (ML) and artificial intelligence (AI) algorithms into energy management and control systems, VPPs can anticipate and adjust to changes in the energy market with a level of improved accuracy. Furthermore, key players in the virtual power plant market are engaging in collaborations and acquisitions to provide enhanced services to various applications. On 10 January 2023, GM, Ford, Google and solar energy producers collaborated to establish standards for scaling up the use of virtual power plants (VPPs), systems for easing loads on electricity grids when supply is short. The virtual power plant partnership (VP3) also aims to shape policy for promoting the use of the systems.
IMARC Group provides an analysis of the key trends in each segment of the market, along with virtual power plant market forecast at the global, regional, and country levels for 2025-2033. Our report has categorized the market based on technology, source, and end user.
Breakup by Technology:
Demand response accounts for the majority of the market share
The report has provided a detailed breakup and analysis of the market based on the technology. This includes distribution generation, demand response, and mixed asset. According to the report, demand response represented the largest segment.
Demand response is preferred to balance electricity supply and demand. It adjusts the consumption of electricity during times of high or low availability. VPPs continuously monitor the electricity grid, including supply, demand, and pricing data, in real time. They also gather information on the state of the distributed energy resources within the system. VPPs use advanced algorithms and ML to forecast electricity demand patterns. They also predict when demand will peak and when there will be excess supply from renewable sources.
Breakup by Source:
A detailed breakup and analysis of the market based on the source have also been provided in the report. This includes renewable energy, cogeneration, and energy storage.
Renewable energy sources can be naturally replenished and are considered eco-friendly because they emit fewer greenhouse gases (GHGs). Their importance in VPPs is significant as they can assist in lowering carbon emissions and supplying eco-friendly and renewable energy.
Cogeneration, also called combined heat and power (CHP), involves the simultaneous generation of electricity and useful heat from a single fuel source such as natural gas, biomass, or waste heat. Moreover, VPPs have the ability to incorporate CHP systems such as industrial CHP plants, district heating systems, and commercial cogeneration units in order to enhance energy efficiency and fully utilize resources. Besides this, cogeneration has the potential to enhance energy efficiency and decrease greenhouse gas emissions.
Energy storage systems play a vital role in VPPs by allowing for the effective control and enhancement of various distributed energy resources. They offer versatility by saving extra energy during times of surplus and discharging it during times of high demand or low renewable energy production.
Breakup by End User:
Industrial represents the leading market segment
The report has provided a detailed breakup and analysis of the market based on the end user. This includes industrial, commercial, and residential. According to the report, industrial represented the largest segment.
VPPs help industrial facilities manage and optimize their energy consumption by integrating various DERs like solar panels, wind turbines, combined heat and power (CHP) systems, and energy storage devices. Industrial VPPs participate in demand response programs by changing their energy consumption in response to grid signals or price fluctuations. This helps balance supply and demand on the grid and can generate revenue for industrial facilities. They can also automate load shedding or load shifting processes to reduce energy consumption during peak demand events. They also assist in enhancing energy resilience by enabling seamless transitions between grid power and on-site generation/storage during disruptions.
Breakup by Region:
North America leads the market, accounting for the largest virtual power plant market share
The report has also provided a comprehensive analysis of all the major regional markets, which include North America (the United States and Canada); Asia Pacific (China, Japan, India, South Korea, Australia, Indonesia, and others); Europe (Germany, France, the United Kingdom, Italy, Spain, Russia, and others); Latin America (Brazil, Mexico, and others); and the Middle East and Africa. According to the report, North America represents the largest regional market for virtual power plant.
The rising focus on integrating renewable energy sources, such as wind and solar into the grid is supporting the market growth in the North America region. Besides this, there is an increase in the awareness among individuals about the importance of maintaining grid resilience. Furthermore, there is a rise in the conduction of demand response programs that allow individuals to actively participate in managing their energy consumption. Additionally, the increasing construction of solar and hydel power plants is strengthening the market growth. In addition, there is a rise in the adoption of virtual power plants due to favorable government initiatives. For instance, on 26 July 2023, the California Energy Commission (CEC) approved a new VPP program that aims to help thousands of distributed solar-charged and standalone batteries located at homes and businesses throughout the state to meet the state’s growing electricity needs.
Report Features | Details |
---|---|
Base Year of the Analysis | 2024 |
Historical Period | 2019-2024 |
Forecast Period | 2025-2033 |
Units | Billion USD |
Scope of the Report | Exploration of Historical Trends and Virtual Power Plant Market Outlook, Industry Catalysts and Challenges, Segment-Wise Historical and Future Market Assessment:
|
Technologies Covered | Distribution Generation, Demand Response, Mixed Asset |
Sources Covered | Renewable Energy, Cogeneration, Energy Storage |
End Users Covered | Industrial, Commercial, Residential |
Regions Covered | Asia Pacific, Europe, North America, Latin America, Middle East and Africa |
Countries Covered | United States, Canada, Germany, France, United Kingdom, Italy, Spain, Russia, China, Japan, India, South Korea, Australia, Indonesia, Brazil, Mexico |
Companies Covered | ABB Ltd., AGL Energy Ltd., Autogrid Systems Inc., Enel Spa, Flexitricity Limited (Reserve Power Holdings (Jersey) Limited), General Electric Company, Hitachi Ltd., Next Kraftwerke GmbH, Osisoft LLC (AVEVA Group plc), Schneider Electric SE, Siemens Aktiengesellschaft, Sunverge Energy Inc., etc. |
Customization Scope | 10% Free Customization |
Post-Sale Analyst Support | 10-12 Weeks |
Delivery Format | PDF and Excel through Email (We can also provide the editable version of the report in PPT/Word format on special request) |
The global virtual power plant market was valued at USD 2.1 Billion in 2024.
We expect the global virtual power plant market to exhibit a CAGR of 22.25% during 2025-2033.
The continuous upgradation of existing power infrastructures, coupled with the increasing demand for clean electricity from renewable energy sources, is primarily driving the global virtual power plant market.
The sudden outbreak of the COVID-19 pandemic had led to the implementation of stringent lockdown regulations across several nations resulting in the temporary closure of numerous end-use industries, thereby limiting the demand for virtual power plants.
Based on the technology, the global virtual power plant market has been segmented into distribution generation, demand response, and mixed asset. Currently, demand response technology holds the majority of the total market share.
Based on the end user, the global virtual power plant market can be divided into industrial, commercial, and residential. Among these, the industrial sector exhibits a clear dominance in the market.
On a regional level, the market has been classified into North America, Asia-Pacific, Europe, Latin America, and Middle East and Africa, where North America currently dominates the global market.
Some of the major players in the global virtual power plant market include ABB Ltd., AGL Energy Ltd., Autogrid Systems Inc., Enel Spa, Flexitricity Limited (Reserve Power Holdings (Jersey) Limited), General Electric Company, Hitachi Ltd., Next Kraftwerke GmbH, Osisoft LLC (AVEVA Group plc), Schneider Electric SE, Siemens Aktiengesellschaft, and Sunverge Energy Inc.