GaN Power Device Market Size:
The global GaN power device market size reached USD 347.5 Million in 2023. Looking forward, IMARC Group expects the market to reach USD 3,864.9 Million by 2032, exhibiting a growth rate (CAGR) of 29.8% during 2024-2032. The market is rapidly expanding, driven by the growing demand for energy efficiency, recent advancements in electric vehicle (EV) market, rising innovations in the semiconductor industry, widespread adoption of renewable energy technology, and the ongoing miniaturization of electronics.
Report Attribute
|
Key Statistics
|
Base Year
|
2023
|
Forecast Years
|
2024-2032
|
Historical Years
|
2018-2023
|
Market Size in 2023
|
USD 347.5 Million |
Market Forecast in 2032
|
USD 3,864.9 Million |
Market Growth Rate 2024-2032 |
29.8% |
GaN Power Device Market Analysis:
- Major Market Drivers: The key drivers include the ongoing shift towards energy efficiency across various sectors, the increasing demand for electric vehicles (EVs) and renewable energy systems, rapid innovations in the semiconductor industry, and the heightened adoption of renewable energy technology.
- Key Market Trends: Based on the GaN power device market analysis, the ongoing shift towards the miniaturization of electronic devices and the global rollout of fifth generation (5G) networks are supporting the market growth.
- Geographical Trends: Several regions are showing growth in the GaN power device market, due to the growing manufacturing base, significant investments in technology, rising focus on renewable energy, and the increasing electrification of the automotive sector.
- Competitive Landscape: Some of the major market players in the GaN power device industry include Efficient Power Conversion, GaN Systems Inc., IQE, Koninklijke Philips N.V., MACOM Technology Solutions, Microsemi Corporation (Microchip Technology Inc.), Mitsubishi Electric Corporation, Navitas Semiconductor Inc., Qorvo Inc., Sumitomo Electric Industries Ltd., Texas Instruments Incorporated, Toshiba Corporation, and Wolfspeed Inc. (Cree Inc.), among many others.
- Challenges and Opportunities: While the industry confronts numerous constraints, such as high upfront cost and technical complications in production, it also offers potential in the form of growing markets and applications. The continued transition towards sustainable energy and the electrification of the automobile sector offers tremendous development opportunities for GaN Power devices.
GaN Power Device Market Trends:
Increasing Demand for Energy Efficiency
The sudden shift towards energy efficiency is a major factor driving the gallium nitride (GaN) power devices market growth. They are known for their ability to operate at higher voltages, frequencies, and temperatures than silicon-based counterparts, leading to more efficient power conversion. For instance, Efficient Power Conversion (EPC) launched EPC9137, a scalable 1.5 kW, two-phase 48 V – 12 V demonstration board powered by gallium nitride (GaN) FETs. The design of this demonstration board is scalable as two converters can be paralleled to achieve 3 kW, or three converters can be paralleled to achieve 4.5 kW. By 2025, one of every ten vehicles sold across the globe is projected to be a 48 V mild hybrid. These hybrid systems boost fuel efficiency, deliver four times the power, and reduce carbon dioxide emissions, requiring a 48V – 12V bidirectional converter, with power ranging from 1.5 kW to 6 kW. EPC eGaN FETs can operate with 97% efficiency at 250 kHz switching frequency, enabling 800 W/phase compared to silicon-based solutions, which are limited to 600 W/phase due to the limitation on the inductor current at 100 kHz maximum switching frequency. This trend is supported by governmental regulations and policies aimed at reducing energy consumption and carbon footprints, further propelling the market for GaN power devices.
Growth in the Electric Vehicle (EV) Market
The booming EV market is a significant catalyst for the growth of GaN power devices. These devices are critical in EVs for applications such as onboard chargers, DC/DC converters, and power inverters. GaN's superior efficiency and high-power density is ideal for EVs, contributing to lighter, smaller, and more reliable systems. For instance, IQE plc, in a strategic collaboration with GaN company VisIC, developed high-reliability GaN D-Mode (D-Mode GaN) power products for use in EV inverters. They developed 200mm D-Mode GaN power epiwafers for longer ranges and faster charging times for EVs, addressing two of the most significant challenges in electric vehicle adoption. Moreover, EPC announced the development of the EPC9194 GaN-based inverter reference design that enhances motor drive system efficiency, range, and torque while doubling the power per weight. It operates from an input supply voltage range of 14 V to 60 V and delivers up to 60 Apk (40 ARMS) output current. This voltage range and power level make the solution ideal for a variety of 3-Phase BLDC motor drives, including eBikes, eScooters, drones, robots, and DC servo motors.
Advancements in Semiconductor Technology
Continuous improvements and breakthroughs in semiconductor materials and manufacturing processes have significantly reduced the cost and improved the performance of GaN power devices. For instance, MACOM Technology Solutions Inc. (“MACOM”), a leading supplier of semiconductor solutions, developed a new gallium nitride on silicon carbide (GaN-on-SiC) power amplifier product line, along with the introduction of the first two new products, the MAPC-A1000 and the MAPC-A1100. The MAPC-A1000 is a high-power GaN-on-SiC amplifier designed to operate between 30 MHz and 2.7 GHz. It integrates an input match, which simplifies the customer’s design-in effort. It can also deliver more than 25 W (44dBm) at greater than 50% efficiency from 500 MHz to 2.7 GHz when tested in a circuit designed for operation over 2.2 GHz simultaneous bandwidth. Along with this, the MAPC-A1100 is a high-power GaN-on-SiC amplifier that is designed to operate up to 3.5 GHz. The device is capable of supporting CW and pulsed operations with output power levels of at least 65 W (48.1dBm) in an air cavity ceramic package. These advancements are expected to bolster the market growth over the forecasted period.
GaN Power Device Market Segmentation:
IMARC Group provides an analysis of the key trends in each segment of the market, along with forecasts at the global, regional, and country levels for 2024-2032. Our report has categorized the market based on device type, voltage range, application, and end-use industry.
Breakup by Device Type:
- Power Device
- Discrete Power Device
- Integrated Power Device
- RF Power Device
- Discrete RF Power Device
- Integrated RF Power Device
The report has provided a detailed breakup and analysis of the market based on the device type. This includes power device (discrete power device and integrated power device) and RF power device (discrete RF power device and integrated RF power device).
According to the GaN power device market analysis, the power device sector specializes in dealing with applications that demand efficient power conversion and management. It involves power supply, inverters, and converters for industries, such as renewable energy, automotive, industrial, and consumer electronics. GaN power devices are praised for their efficiency, excellent thermal conductivity, and ability to operate at greater frequencies and temperatures.
In accordance with the GaN power device market segmentation, radio frequency (RF) power devices are used for applications that demand the generation and management of high-frequency signals. It is required in telecommunications devices, like cellular base stations, satellite communications, and radar systems, including those used in military and defense applications. GaN RF power devices are renowned for their great power density, efficiency, and reliability at high frequencies.
Breakup by Voltage Range:
- <200 Volt
- 200–600 Volt
- >600 Volt
A detailed breakup and analysis of the market based on the voltage range have also been provided in the report. This includes <200 volt, 200–600 volt, and >600 volt.
According to the GaN power device market statistics, the <200-volt category emphasizes low to medium-power applications in consumer electronics, mobile devices, and automotive subsystems. It is suitable for providing quick charging for cellphones, laptops, and other portable devices. Their higher efficiency and thermal performance allow for lighter, compact, and more energy-efficient power adapters and converters, making them increasingly popular in the consumer electronics sector.
In accordance with the GaN power device market analysis, the 200-600 volt GaN power device covers a wide range of applications, including electric vehicles (EVs), renewable energy systems, and industrial power supply. It is used in EV onboard chargers, DC/DC converters, and solar inverters to increase efficiency, reduce size, and regulate heat, thereby boosting the GaN power device market recent developments.
According to the GaN power device market overview, the >600-volt category is widely utilized for high-power applications, such as industrial motors, grid infrastructure, and high-voltage direct current (HVDC) transmission systems. It is regarded for its capacity to withstand high voltages while minimizing losses and increasing efficiency. Furthermore, GaN's ability to function effectively at high voltages makes it ideal for applications requiring strong power handling capabilities, such as industrial machinery and grid-scale power conversion.
Breakup by Application:
- Power Drives
- Power Supply Systems
- Radio Frequency Based Systems
The report has provided a detailed breakup and analysis of the market based on the application. This includes power drives, power supply systems, and radio frequency based systems.
In line with this GaN power device market outlook, the power drives segment caters to applications involving the control and management of electric motors and drives. It includes electric vehicles (EVs), industrial automation systems, and high-performance computing cooling systems. GaN's exceptional efficiency and high switching frequencies that enable compact, lightweight, and energy-efficient designs for motor drives are positively influencing the GaN power device market drivers.
In the power supply systems segment, GaN power devices are improving the design and functionality of power supply units (PSUs), adapters, and converters across consumer electronics, telecommunications, and data centers. Their inherent properties, such as low on-resistance and high thermal conductivity, allow for smaller, lighter, and more energy-efficient power supplies to operate at higher frequencies with reduced heat generation, propelling the GaN power device market share.
The radio frequency (RF) based systems segment focuses on applications requiring high-frequency signal generation and amplification, such as cellular base stations, radar systems, satellite communications, and RF heating. They are lauded for their high-power density, efficiency, and reliability at microwave and millimeter-wave frequencies, enabling more compact and energy-efficient RF systems.
Breakup by End-Use Industry:
- Telecommunications
- Automotive
- Renewable Power Generation
- Military
- Aerospace and Defense
- Consumer Electronics
- Others
A detailed breakup and analysis of the market based on the end-use industry have also been provided in the report. This includes telecommunications, automotive, renewable power generation, military, aerospace and defense, consumer electronics, and others.
In the telecommunications industry, GaN power devices enhance network efficiency and capacity for the deployment of base stations for cellular networks, including the expansion of fifth-generation (5G) technology. Moreover, they provide the ability to handle high power densities and operate efficiently at high frequencies, which enables telecommunications equipment to support increased data traffic and provide faster and more reliable wireless communication.
The automotive segment is witnessing a significant transformation with the adoption of GaN power devices, especially in electric vehicles (EVs) and hybrid systems. It is utilized in EV powertrains, onboard chargers, DC/DC converters, and power inverters, offering higher efficiency, reduced size, and weight advantages over traditional silicon-based components. Furthermore, the ongoing shift towards electrification to meet stringent environmental regulations and enhance vehicle performance is positively influencing the future of the GaN power device market.
According to the GaN power device market trends, it plays a pivotal role in the renewable power generation sector for solar photovoltaic (PV) inverters and wind power converters. Their superior efficiency and ability to operate at high frequencies enable more compact and cost-effective renewable energy systems. Moreover, the sudden shift towards sustainable energy sources, boosting the use of GaN technology to maximize the conversion efficiency of renewable power systems, is enhancing the GaN power device market demand.
In the military, aerospace, and defense industries, GaN power devices are crucial for applications that require high power and reliability in harsh environments, such as radar systems, satellite communications, and electronic warfare. Moreover, the robustness and high performance of GaN under extreme conditions offer significant advantages in various critical applications to ensure operational effectiveness and reliability.
The consumer electronics segment leverages GaN power devices to meet the growing demand for smaller, more efficient, and powerful electronic devices. They enable compact power adapters, fast charging technologies, and efficient power management solutions for smartphones, laptops, wearables, and smart home devices. Moreover, the continuous push towards miniaturization and the need for high-performance electronics are providing a thrust to the GaN power device market growth.
Breakup by Region:
- North America
- Asia Pacific
- China
- Japan
- India
- South Korea
- Australia
- Indonesia
- Others
- Europe
- Germany
- France
- United Kingdom
- Italy
- Spain
- Russia
- Others
- Latin America
- Middle East and Africa
The report has also provided a comprehensive analysis of all the major regional markets, which include North America (the United States and Canada); Asia Pacific (China, Japan, India, South Korea, Australia, Indonesia, and others); Europe (Germany, France, the United Kingdom, Italy, Spain, Russia, and others); Latin America (Brazil, Mexico, and others); and the Middle East and Africa.
The Asia Pacific region is growing rapidly, attributed to its robust manufacturing base, significant investments in technology and infrastructure, and the rapid growth of end-use industries, such as automotive, consumer electronics, and renewable energy. Countries like China, Japan, and South Korea are at the forefront of electric vehicle (EV) production and telecommunications infrastructure, coupled with the deployment of 5G networks. For example, China accounted for 58% of global sales of electric vehicles (EVs) and a mammoth 70% of total EV production.
Europe's GaN power device market is driven by the region's strong emphasis on energy efficiency, renewable energy, and the automotive sector, owing to the rising shift towards electric vehicles. Moreover, the European Union's stringent regulations on carbon emissions and energy consumption encourage the adoption of advanced technologies like GaN. For instance, the European Parliament has adopted the European Climate Law, which raises the EU's target of reducing net greenhouse gas emissions by at least 55% by 2030 and making climate neutrality by 2050 legally binding.
North America is a key market for GaN power devices, characterized by high technological adoption rates, advanced research and development (R&D) capabilities, and a well-established telecommunications and automotive industry. The United States plays a pivotal role in the development of GaN technology, supported by the presence of leading semiconductor companies and research institutions.
The Latin American market for GaN power devices is emerging, driven by increasing investments in telecommunications, renewable energy, and automotive sectors. Moreover, the rising focus on sustainable development and energy efficiency, which presents opportunities for the expansion of GaN power device applications, is contributing to the market growth.
The Middle East and Africa (MEA) region is witnessing a growing interest in GaN power devices in applications related to renewable energy, telecommunications, and infrastructure development. Moreover, countries in the MEA region are increasingly investing in solar energy projects and infrastructure modernization, driving the demand for efficient power conversion technologies.
Competitive Landscape:
- The market research report has also provided a comprehensive analysis of the competitive landscape in the market. Detailed profiles of all major companies have also been provided. Some of the major market players in the GaN power device industry include Efficient Power Conversion, GaN Systems Inc., IQE, Koninklijke Philips N.V., MACOM Technology Solutions, Microsemi Corporation (Microchip Technology Inc.), Mitsubishi Electric Corporation, Navitas Semiconductor Inc., Qorvo Inc., Sumitomo Electric Industries Ltd., Texas Instruments Incorporated, Toshiba Corporation, Wolfspeed Inc. (Cree Inc.), etc.
(Please note that this is only a partial list of the key players, and the complete list is provided in the report.)
- Key players in the GaN power device market are actively engaging in research and development (R&D) to enhance efficiency, reduce costs, and open up new application areas. Moreover, they are focusing on innovation in manufacturing processes and device design to improve the performance and reliability of GaN devices. For instance, Sumitomo Electric Industries, Ltd. developed a gallium nitride transistor (GaN-HEMT) that uses N-polar GaN, for high-frequency amplifier applications, including 5G. Besides this, major players are forming strategic partnerships and collaborations to leverage each other's strengths to accelerate the development and commercialization of GaN solutions.
GaN Power Device Market News:
- In March 2024, Efficient Power Conversion (EPC) announced the launch of the EPC9193, a 3-phase BLDC motor drive inverter using the EPC2619 eGaN FET, which operates with a wide input DC voltage ranging from 14 V and 65 V and has two configurations, a standard unit and a high current version. The EPC9193 standard reference design uses a single FET for each switch position and can deliver up to 30 ARMS maximum output current. Whereas the high current configuration version, the EPC9193HC, uses two paralleled FETs per switch position, coupled with the ability to deliver up to 60 Apk (42 ARMS) maximum output current. Both versions of the EPC9193 contain all the necessary critical function circuits to support a complete motor drive inverter, including gate drivers, regulated auxiliary power rails for housekeeping supplies, voltage, and temperature sense, accurate, current sense, and protection functions.
- In September 2023, GaN Systems (Infineon) announced the introduction of its groundbreaking 4th generation GaN power platform that offers new power efficiency and compactness standards, delivering an impressive step-function performance boost and industry-leading figures of merit. For example, with GaN Systems Gen4 in an artificial intelligence (AI) server rack, 3.2kW power supplies at 100W/in3 in 2022 are achieving 120W/in3 with efficiencies above Titanium levels. Gen4 will revolutionize power markets, including consumer electronics, data centers, solar energy, industrial applications, and automotive.
GaN Power Device Market Report Scope:
Report Features |
Details |
Base Year of the Analysis |
2023 |
Historical Period |
2018-2023 |
Forecast Period |
2024-2032 |
Units |
Million USD |
Scope of the Report |
Exploration of Historical Trends and Market Outlook, Industry Catalysts and Challenges, Segment-Wise Historical and Future Market Assessment:
- Device Type
- Voltage Range
- Application
- End-Use Industry
- Region
|
Device Types Covered |
- Power Device: Discrete Power Device, Integrated Power Device
- RF Power Device: Discrete RF Power Device, Integrated RF Power Device
|
Voltage Ranges Covered |
<200 Volt, 200–600 Volt, >600 Volt |
Applications Covered |
Power Drives, Power Supply Systems, Radio Frequency Based Systems |
End-Use Industries Covered |
Telecommunications, Automotive, Renewable Power Generation, Military, Aerospace and Defense, Consumer Electronics, Others |
Regions Covered |
Asia Pacific, Europe, North America, Latin America, Middle East and Africa |
Countries Covered |
United States, Canada, Germany, France, United Kingdom, Italy, Spain, Russia, China, Japan, India, South Korea, Australia, Indonesia, Brazil, Mexico |
Companies Covered |
Efficient Power Conversion, GaN Systems Inc., IQE, Koninklijke Philips N.V., MACOM Technology Solutions, Microsemi Corporation (Microchip Technology Inc.), Mitsubishi Electric Corporation, Navitas Semiconductor Inc., Qorvo Inc., Sumitomo Electric Industries Ltd., Texas Instruments Incorporated, Toshiba Corporation, Wolfspeed Inc. (Cree Inc.), etc. |
Customization Scope |
10% Free Customization |
Post-Sale Analyst Support |
10-12 Weeks |
Delivery Format |
PDF and Excel through Email (We can also provide the editable version of the report in PPT/Word format on special request) |
Key Benefits for Stakeholders:
- IMARC’s industry report offers a comprehensive quantitative analysis of various market segments, historical and current market trends, market forecasts, and dynamics of the GaN power device market from 2018-2032.
- The research report provides the latest information on the market drivers, challenges, and opportunities in the global GaN power device market.
- The study maps the leading, as well as the fastest-growing, regional markets. It further enables stakeholders to identify the key country-level markets within each region.
- Porter's five forces analysis assists stakeholders in assessing the impact of new entrants, competitive rivalry, supplier power, buyer power, and the threat of substitution. It helps stakeholders to analyze the level of competition within the GaN power device industry and its attractiveness.
- The competitive landscape allows stakeholders to understand their competitive environment and provides insight into the current positions of key players in the market.