The global food robotics market size was valued at USD 2.71 Billion in 2024. Looking forward, IMARC Group estimates the market to reach USD 6.29 Billion by 2033, exhibiting a CAGR of 9.32% during 2025-2033. Europe currently dominates the market, holding a significant market share of over 30.8% in 2024. Labor shortages, technological developments, the increased demand for processed foods, stricter food safety laws, and growing consumer expectations for food product quality and diversity are contributing to the market growth.
Report Attribute
|
Key Statistics
|
---|---|
Base Year
|
2024
|
Forecast Years
|
2025-2033
|
Historical Years
|
2019-2024
|
Market Size in 2024
|
USD 2.71 Billion |
Market Forecast in 2033
|
USD 6.29 Billion |
Market Growth Rate (2025-2033) | 9.32% |
The food robotics market is driven by the rising demand for food processing and packaging automation to improve efficiency, reduce costs, and maintain hygiene standards. The increasing adoption of robotics for tasks such as sorting, portioning, and quality inspection is fueled by labor shortages and the need for consistent product quality. For instance, in September 2024, Chipotle Mexican Grill announced its plans to test robots in two California locations to expedite avocado prep and bowl assembly. The Autocado robot can halve avocados in 26 seconds while the Augmented Makeline automates bowl construction. Consumer preferences for packaged and processed foods and stringent food safety regulations also boost investment in robotic solutions.
Key drivers in the United States food robotics market include the push for automation to address labor shortages and enhance operational efficiency in food production and packaging. To meet strict food safety and quality standards, robotics are increasingly adopted, helping to ensure compliance and minimize risks of contamination. Increasing consumer demand for packaged, ready-to-eat, and processed foods has prompted manufacturers to streamline processes with robotic solutions. Technological advancements including AI and machine learning integration improve the adaptability and precision of robotic systems meeting diverse industry needs. For instance, in December 2024, Autonomous food delivery robots launched in downtown Dallas serving meals from two local restaurants. Avride deployed five robots designed for hyperlocal deliveries operating through the UberEats app. With 360-degree cameras, these robots navigate sidewalks and streets at under ten miles per hour ensuring safe deliveries. Additionally, the emphasis on sustainable and cost-effective food production further accelerates the deployment of robotics across the sector.
The rising labor shortage across the globe
The increasing labor shortage around the world as fewer people have an interest in doing repetitive manual jobs is pushing companies to find alternative ways. According to the U.S. Chamber of Commerce, there are 8 Million job openings in the U.S. while there are 6.8 Million unemployed individuals. In line with this, food robotics have become another alternative since it helps to automate many mechanical and man-power tasks with the results of replacing few human working forces while reducing long term application costs. They are extensively used within packaging, sorting and processing which require consistency and are labor intensive. Furthermore, food robotics ensures that production goes uninterrupted, quality is uniform, and the dependency on labor becomes minimal as it could be expensive and scarce at times. Robots are also less restricted than human employees, as they can be programmed to work continuously, unlike humans who require periods of rest, thus improving productivity.
Recent technological advancements
Technological developments in machine learning (ML), robotics, and artificial intelligence (AI) have significantly impacted the capabilities of food robots. According to the government of UK, the proportion of companies offering machine learning-driven products and services across sectors has increased from 21% in 2022 to 35% in 2023. According to the government of UK, the proportion of companies offering machine learning-driven products and services across sectors has increased from 21% in 2022 to 35% in 2023. Furthermore, they can learn and improve their tasks over time, enhancing efficiency and effectiveness. Incorporating vision systems also allows robots to recognize, classify, and handle various food products, adjusting to differences in color, size, and shape. Besides this, the introduction of collaborative robots that are designed to work safely alongside human workers, adding flexibility and efficiency to the production line, is positively influencing the market growth. Additionally, they are highly adaptable to shifting production needs because they are easy to reprogramme and redeploy for various activities.
The increasing demand for processed foods
The escalating demand for processed and packaged foods, fueled by changing consumer preference for convenience foods that are ready-to-eat (RTE) or easy to prepare, is boosting the market growth. According to the U.S. Department of Commerce, in 2022, there were 42,708 food and beverage processing establishments in the United States. Processed foods require consistent quality, safety, and hygiene standards, which can be challenging to achieve through manual processes. In line with this, food robotics ensures precision and consistency, which are essential for maintaining product quality and meeting consumer expectations. Furthermore, automated systems can handle large volumes of food products efficiently, ensuring uniformity in size, shape, and packaging, which is critical for brand consistency. Robotics also makes it possible to scale manufacturing quickly to satisfy changing market demands without sacrificing quality.
The imposition of stringent food safety regulations
Strict food safety laws are being enforced to guarantee the quality and safety of food items, which is driving market expansion. In line with this, robots are essential to fulfilling several regulatory requirements since they reduce the possibility of contamination brought on by humans by automating processes. Furthermore, robots can handle food products in a controlled environment, minimizing human contact and thus reducing the risk of contamination from pathogens, allergens, or foreign objects. They also guarantee uniformity in the processing and handling of food, which is essential for upholding quality standards. Additionally, food robotics provide traceability and data logging capabilities that aid in compliance by offering thorough documentation of production procedures.
The rising consumer expectations for quality and variety
The escalating consumer expectations in terms of food quality and variety are supporting the market growth. According to the USDA, in 2022, California led the nation in food and beverage manufacturing establishments, with a total of 6,569, followed by Texas with 2,898, and New York with 2,748, making them the top three states in this sector. Customers are seeking high-quality products with various options as they become more knowledgeable and discriminating. Robotics adoption in the food sector helps industries satisfy these expectations by enabling them to produce a wide range of high-quality items efficiently. Additionally, automated systems can be programmed to handle different recipes, ingredients, and packaging types, allowing for quick shifts in production to accommodate changing consumer demands. In addition, they guarantee accuracy in food processing, which is essential for upholding standards of quality. Furthermore, since robots reduces human touch with food, its incorporation into food manufacturing meets customer concerns about food safety and hygiene.
IMARC Group provides an analysis of the key trends in each segment of the global food robotics market, along with forecasts at the global, regional, and country levels from 2025-2033. The market has been categorized based on type, payload, application, and region.
Analysis by Type:
Articulated stand as the largest type in 2024, holding around 42.3% of the market. Articulated robots leads the market as they are very flexible and can mimic a human arm movement, allowing it to perform a lot in food processing and packaging. These also provide a lot of freedom, making them the ideal for complex operations, such as cutting, deboning, and intricate food assembly. Besides, the articulated robots are suited in conditions that require precision along with versatility. Besides these characteristics, they can overcome obstacles and work in enclosed places, which makes them in invaluable in crowded production sites. Furthermore, the continuous enhancement in control systems and technologies about end-of-arm tooling (EOAT) enhances articulated capabilities and supports market growth.
Analysis by Payload:
Medium leads the market with around 42.8% of market share in 2024. Medium payload robots are dominating the market because they balance between payload capacity and flexibility and are highly versatile and can be used in several applications in the food industry. They are predominantly used in palletizing, packaging, and transferring of larger food items or batches. Their robust designs provide them with the functionality and stability required to execute high payloads. This serves effectively in preserving product integrity while ensuring safety. These advanced control systems and sensor help medium payload robots execute intricate tasks and process information accurately and systematically.
Analysis by Application:
Palletizing leads the market with around 29.8% of market share in 2024. Palletizing is dominating the market as it makes use of robots to stack food products or packages onto pallets for shipping and storage. Moreover, palletizing robots are designed to carry heavy loads and large volumes to ensure efficient and precise stacking of products. Additionally, they can operate at high speeds, thereby greatly improving the throughput of palletizing operations in food processing facilities. In addition to these aspects, the application of robots for palletizing improves productivity while diminishing the physical pressure on workers thereby enhancing the safety in the working premises. Furthermore, robots can be programmed for different types of pallet patterns and types of products, making them adaptable to various operational needs.
Regional Analysis:
In 2024, Europe accounted for the largest market share of over 30.8%. Europe leads the market mainly due to its well-established industrial base with a long history of automation and innovation, which gives it a good foundation for the integration of robotics in food processing and packaging. Moreover, regional countries are on the leading edge of adopting the latest technologies, including artificial intelligence (AI), machine learning (ML), and advanced sensor technology, all of which improve the capabilities and applications of food robots. In addition to this, the stringent food safety and hygiene regulations across Europe necessitate the adoption of automation to ensure compliance and maintain high standards of food quality thereby contributing positively to the market growth. High labour cost in the region is also encouraging food companies to invest in robotics to reduce dependency on manpower and increase production, thereby fueling up the market growth.
Key Regional Takeaways:
The North American food robotics market is growing steadily, with major drivers being the adoption of automation in the food and beverage industry. Companies are using robotic systems to increase production efficiency, reduce operational costs, and maintain high standards of food safety and quality. This includes the integration of advanced technologies like artificial intelligence and machine learning that allow robots to carry out intricate tasks, including precision cutting, sorting, and quality control. In turn, robotics is playing a very key role in this transformation where consumers' preferences for convenience and on-demand food are being met through optimizing the production process and the possibilities for customization. In addition, increasing trends towards sustainable practices motivate producers to implement robotics for reduction in waste and energy use. The contactless service trends have further sped up the adoption of robotic solutions into services such as food packaging and delivery, which have consequently expanded the food robotics market within the region.
In 2024, United States accounted for a share of 88.70% of the North America market. The food robotics market in the United States is experiencing significant growth due to several key drivers. Companies are increasingly adopting robotic technologies to enhance production efficiency and reduce labor costs as automation is streamlining food processing and packaging operations. Manufacturers are integrating AI and machine learning into robots enabling them to perform complex tasks such as sorting, packaging and quality control with high precision. As consumer demand for personalized food products and faster delivery is rising robotics is helping to meet these needs by improving production speed and customization. According to USDA, in 2022, approximately 20% of U.S. consumers made grocery purchases through online channels. Additionally, food safety regulations are pushing companies to invest in robotic systems that ensure consistent product quality and reduce human error. The growing trend of contactless services in response to the COVID-19 pandemic is also accelerating the adoption of robotics for tasks like cooking, packaging and delivery thus contributing to the market’s expansion.
The food robotics market across the Asia-Pacific region is witnessing robust growth, driven by a range of key factors including increasing demand for automation in food processing boosting the adoption of robotic solutions, enhancing efficiency and reducing labor costs. According to the IBEF, the food processing sector accounts for 32% of the total food market and is a key industry within the country, representing 13% of total exports and 6% of industrial investments. Manufacturers are integrating robotics to improve precision and consistency in food production, addressing challenges like food safety and quality. Technological advancements, including the development of AI-driven robots, are enhancing capabilities and enabling more flexible production lines. Additionally, the growing need for personalized and on-demand food products is pushing food manufacturers to adopt robotics for faster and more customized processing.
The food robotics market in Latin America is experiencing significant growth due to increasing demand for automation in food production. Companies are adopting robotic systems to improve efficiency and reduce labor costs. Technological advancements are enabling the development of more sophisticated robots capable of handling complex tasks. Rising consumer demand for processed and ready-to-eat foods is also driving the market. According to USDA, in 2023, the Brazilian food processing sector generated revenues of USD 231 Billion, reflecting a 7.2% growth compared to the previous year.
The food robotics market in the Middle East and Africa is experiencing significant growth due to the increasing demand for automation in food processing and packaging. Companies are adopting robotic technologies to enhance efficiency, reduce labor costs, and improve food safety standards. Technological advancements in robotics, coupled with a growing need for high-quality, consistent food production, are driving the market. Additionally, rising consumer demand for ready-to-eat products and a focus on sustainable practices are further boosting the adoption of food robotics. According to the USDA, the UAE is home to more than 2,000 food and beverage manufacturing companies, collectively generating annual revenues of USD 7.63 Billion.
The food robotics market is characterized by intense competition driven by the increasing demand for automation across various segments of the food industry. Companies are focusing on innovation integrating advanced technologies like AI and machine learning into their robotics solutions to enhance precision, adaptability, and efficiency. The market is segmented into applications such as processing, packaging and delivery with each segment witnessing rapid technological advancements. Players are leveraging strategic partnerships, research and development and tailored solutions to gain a competitive edge. For instance, in May 2024, ABB Robotics announced its partnership with South Korea's Pulmuone to develop automation solutions for lab-grown seafood. This collaboration aims to enhance production efficiency and minimize contamination while freeing researchers from repetitive tasks. Leveraging AI and robotics expertise, the initiative seeks to establish a sustainable mass production system for innovative seafood products. The growing emphasis on sustainability and hygiene standards is pushing firms to develop robotics solutions that address these needs. Competitive pricing, product differentiation and after-sales service are also key factors influencing market positioning and customer retention.
The report has also analysed the competitive landscape of the market with some of the key players being:
(Please note that this is only a partial list of the key players, and the complete list is provided in the report.)
Report Features | Details |
---|---|
Base Year of the Analysis | 2024 |
Historical Period | 2019-2024 |
Forecast Period | 2025-2033 |
Units | Billion USD |
Scope of the Report | Exploration of Historical Trends and Market Outlook, Industry Catalysts and Challenges, Segment-Wise Historical and Future Market Assessment:
|
Types Covered | SCARA, Articulated, Parallel, Cylindrical, Others |
Payloads Covered | Low, Medium, Heavy |
Applications Covered | Packaging, Repackaging, Palletizing, Picking, Processing, Others |
Regions Covered | Asia Pacific, Europe, North America, Latin America, Middle East and Africa |
Countries Covered | United States, Canada, Germany, France, United Kingdom, Italy, Spain, China, Japan, India, South Korea, Australia, Indonesia, Brazil, Mexico |
Companies Covered | ABB Ltd, Bastian Solutions LLC (Toyota Industries Corporation), Denso Corporation, Fanuc Corporation, Kawasaki Heavy Industries Ltd., Kuka AG (Midea Group Co. Ltd.), Mitsubishi Electric Corporation, Rockwell Automation Inc., Seiko Epson Corporation, Stäubli International AG, Universal Robots A/S (Teradyne Inc.), Yaskawa Electric Corporation, etc. |
Customization Scope | 10% Free Customization |
Post-Sale Analyst Support | 10-12 Weeks |
Delivery Format | PDF and Excel through Email (We can also provide the editable version of the report in PPT/Word format on special request) |
Key Benefits for Stakeholders:
The global food robotics market was valued at USD 2.71 Billion in 2024.
IMARC estimates the food robotics market to exhibit a CAGR of 9.32% during 2025-2033, reaching USD 6.29 Billion by 2033.
The food robotics market is driven by labor shortages, technological advancements, increased demand for processed foods, stricter food safety regulations, and growing consumer expectations for food product quality and diversity. Automation improves efficiency, reduces costs, and ensures consistent product quality.
On a regional level, the market has been classified into North America, Asia Pacific, Europe, Latin America, and Middle East and Africa, wherein Europe currently dominates the market.
Some of the major players in the food robotics market include ABB Ltd, Bastian Solutions LLC (Toyota Industries Corporation), Denso Corporation, Fanuc Corporation, Kawasaki Heavy Industries Ltd., Kuka AG (Midea Group Co. Ltd.), Mitsubishi Electric Corporation, Rockwell Automation Inc., Seiko Epson Corporation, Stäubli International AG, Universal Robots A/S (Teradyne Inc.), and Yaskawa Electric Corporation, etc.