Market Overview 2024-2032:
The global fluorescent in situ hybridization (FISH) probe market size reached US$ 872.9 Million in 2023. Looking forward, IMARC Group expects the market to reach US$ 1,512.7 Million by 2032, exhibiting a growth rate (CAGR) of 6.1% during 2024-2032. The increasing prevalence of genetic disorders, growing emphasis on early disease detection and screening, and extensive research and development (R&D) activities are some of the major factors propelling the market.
Report Attribute
|
Key Statistics
|
Base Year
|
2023 |
Forecast Years
|
2024-2032
|
Historical Years
|
2018-2023
|
Market Size in 2023 |
US$ 872.9 Million |
Market Forecast in 2032 |
US$ 1,512.7 Million |
Market Growth Rate (2024-2032) |
6.1% |
Fluorescent in situ hybridization (FISH) probe is a molecular biology technique used to visualize and map specific deoxyribonucleic acid (DNA) or ribonucleic acid (RNA) sequences within cells and tissues. They are composed of various materials, such as oligonucleotides, fluorophores, linkers and spacers, blocking reagents, and hybridization buffers. FISH probes are widely used in chromosomal abnormality detection, gene copy number variation analysis, oncology research, microbial identification, gene expression analysis, and prenatal diagnosis. They offer high sensitivity and resolution, allowing for the detection of even low-copy-number target sequences.
The increasing demand for personalized medicine is facilitating the adoption of FISH probes, as they provide valuable insights into individual patients' genetic profiles, enabling tailored treatment strategies based on their specific genetic alterations. Furthermore, the widespread utilization of FISH probes by clinicians and researchers to provide high-resolution visual and quantitative information about genetic abnormalities is providing an impetus to the market growth. Additionally, the implementation of supportive policies by several governments to reimburse patients for advanced diagnostic tests and provide access to high-quality healthcare facilities is strengthening the market growth. Other factors, including the rising geriatric population, the rapid expansion of the healthcare industry, extensive research and development (R&D) activities, rising focus on targeted therapies and increasing investment in the development of advanced FISH probes, are anticipated to drive the market growth.
Fluorescent in Situ Hybridization (FISH) Probe Market Trends/Drivers:
The increasing prevalence of genetic disorders
FISH probes are extensively used to detect structural abnormalities associated with genetic disorders, such as deletions, duplications, inversions, and translocations. Furthermore, they play a crucial role in the diagnosis of microdeletion and microduplication syndromes that are extremely difficult to detect under a standard microscope. Moreover, FISH probes enable the detection of repeat expansions, which aids in identifying Huntington's disease, fragile X syndrome, and myotonic dystrophy. Apart from this, they allow the assessment of gene copy number changes, thus aiding healthcare professionals in disease classification, predicting treatment response, and guiding personalized therapy decisions, which in turn is contributing to the market growth. Additionally, FISH probes provide information about carrier status, which allow individuals to make informed reproductive decisions and receive appropriate genetic counseling.
The growing emphasis on early disease detection and screening
FISH probes play a critical role in early cancer detection and diagnosis, as they can target specific genetic alterations commonly found in various cancers, including gene amplifications, deletions, translocations, and chromosomal rearrangements. Apart from this, they find applications in early diagnosis of infectious diseases caused by parasites, bacteria, or viruses. Moreover, FISH probes are extensively used in the timely detection of genetic conditions, such as Down syndrome, Turner syndrome, or Duchenne muscular dystrophy. Additionally, they are widely employed in prenatal diagnosis to detect chromosomal abnormalities in developing fetuses, which allows parents to make informed decisions about pregnancy and potential medical interventions.
Extensive research and development (R&D) activities
The introduction of multiplex FISH Probes, which allows the simultaneous detection of multiple genetic targets within a single sample, enabling researchers and clinicians to analyze multiple genomic regions in a single experiment, thus saving time and resources, is positively influencing the market growth. Furthermore, the recent development of proximity-FISH probes that enables the detection of spatial proximity between two or more genetic targets within a cell or tissue sample, thus providing valuable information about spatial interactions, gene clustering, and chromatin organization within cells, is contributing to the market growth. Moreover, the rapid digitalization of FISH Probe data, allowing for enhanced data sharing and automated image analysis, storage, and remote access, is supporting the market growth.
Fluorescent in Situ Hybridization (FISH) Probe Industry Segmentation:
IMARC Group provides an analysis of the key trends in each segment of the global fluorescent in situ hybridization (FISH) probe market report, along with forecasts at the global, regional and country levels from 2024-2032. Our report has categorized the market based on type, probe type, technology, application, and end-user.
Breakup by Type:
RNA dominates the market
The report has provided a detailed breakup and analysis of the market based on the type. This includes DNA and RNA (mRNA, miRNA, and others). According to the report, RNA represented the largest market segment.
RNA is dominating the market, as RNA FISH probes enable researchers to investigate gene expression patterns at the single-cell level, which provides valuable insights into cellular heterogeneity, developmental processes, and disease mechanisms. Furthermore, they enable the detection and visualization of non-coding RNAs (ncRNAs), such as microRNAs (miRNAs), circular RNAs (circRNAs), and long non-coding RNAs (lncRNAs), which aids in improving the understanding of the functions and regulatory networks of these important RNA molecules. Apart from this, RNA FISH Probes facilitate the real-time observation and tracking of RNA dynamics, such as RNA synthesis, degradation, and turnover rates, thus enabling researchers to study RNA biology and cellular response. Moreover, they offer high sensitivity and specificity in detecting RNA molecules by reducing background noise and false-positive signals.
Breakup by Probe Type:
- Locus Specific Probes
- Alphoid/Centromeric Repeat Probes
- Whole Chromosome Probes
Locus specific probes hold the largest share in the market
The report has provided a detailed breakup and analysis of the market based on the probe type. This includes locus specific probes, alphoid/centromeric repeat probes, and whole chromosome probes. According to the report, locus specific probes accounted for the largest market share.
Locus-specific probes are designed to hybridize to specific genetic loci or regions of interest in the genome, which allows researchers and clinicians to focus on specific genes and chromosomal abnormalities associated with particular diseases and conditions. They also offer high diagnostic accuracy and precision by enabling the detection of specific genetic abnormalities with great specificity. Apart from this, Locus-specific probes are extensively used to detect and characterize genetic variations in patients, including chromosomal aberrations, microdeletions, and gene mutations.
Breakup by Technology:
Flow FISH dominates the market
The report has provided a detailed breakup and analysis of the market based on the technology. This includes flow FISH, Q FISH, and others. According to the report, flow FISH represented the largest market segment.
Flow FISH is dominating the market as it allows for rapid processing of a large number of cells, thus offering more data in a shorter amount of time compared to traditional FISH methods. Furthermore, it is known for its high sensitivity, which makes it ideal for detecting even low-abundance targets in medical diagnostics and research. In addition, flow FISH can be easily integrated with automation technologies to reduce manual errors and increase the throughput. Besides this, it provides quantitative data, which is crucial in fields such as healthcare, where precise measurements are required for diagnosis and treatment plans. Moreover, the cost per sample in flow FISH is less than traditional FISH methods, especially when analyzing large samples, making it highly appealing for both research and clinical settings.
Breakup by Application:
- Cancer
- Genetic Diseases
- Others
Cancer dominates the market
The report has provided a detailed breakup and analysis of the market based on the application. This includes cancer, genetic diseases, and others. According to the report, cancer represented the largest market segment.
FISH probes are widely used in cancer treatment as they help to detect specific genetic abnormalities. It also enables healthcare professionals to identify and classify cancer cells, which further assist in diagnosis, prognosis, and treatment decision-making. Furthermore, they offer high specificity and sensitivity in detecting genetic aberrations and chromosomal rearrangements that are characteristic of various types of cancer. Apart from this, FISH probes aid oncologists in selecting the most appropriate targeted therapies and monitoring treatment response. They also assist in cancer research by improving the understanding of the underlying mechanism associated with cancer. Additionally, FISH probes are widely used in liquid biopsies to offer a non-invasive approach for cancer detection, monitoring, and treatment response assessment.
Breakup by End-User:
- Research Organizations
- Diagnostic Centers
- Others
The report has provided a detailed breakup and analysis of the market based on the end-user. This includes flow research organizations, diagnostic centers, and others.
FISH probes are widely used in research organizations to enable the visualization and detection of specific DNA or RNA sequences within cells or tissues. They are used in gene mapping and chromosomal analysis, which aids in studying cancer genetics and identifying chromosomal rearrangements associated with specific malignancies. Furthermore, the FISH probe is extensively utilized in developmental biology and neurobiology to provide valuable insights into gene regulation, cellular development, and disease mechanisms.
Diagnostic centers extensively utilize FISH probes to identify genetic alterations in patient samples, which aids in diagnosing cancer, determining prognosis, and guiding treatment decisions. They also assist in genetic disease screening by detecting specific genetic abnormalities, such as aneuploidies and microdeletion syndromes. Apart from this, FISH probes are widely used in prenatal testing to screen for chromosomal abnormalities in developing fetuses.
Breakup by Region:
- North America
- Asia Pacific
- China
- Japan
- India
- South Korea
- Australia
- Indonesia
- Others
- Europe
- Germany
- France
- United Kingdom
- Italy
- Spain
- Russia
- Others
- Latin America
- Middle East and Africa
North America exhibits a clear dominance in the market, accounting for the largest fluorescent in situ hybridization (FISH) probe market share
The report has also provided a comprehensive analysis of all the major regional markets, which includes North America (the United States and Canada); Asia Pacific (China, Japan, India, South Korea, Australia, Indonesia, and others); Europe (Germany, France, the United Kingdom, Italy, Spain, Russia, and others); Latin America (Brazil, Mexico, and others); and the Middle East and Africa. According to the report, North America represented the largest market segment.
North America is dominating the FISH probe market owing to the strong focus on biomedical research in the region aimed at developing new diagnostic tools and molecular technologies. Additionally, the presence of a robust healthcare infrastructure comprising well-established hospitals, clinical laboratories, and diagnostic facilities is favoring the market growth. Moreover, the growing incidences of genetic disorders and cancer are facilitating the demand for accurate and reliable molecular diagnostic tools, such as FISH probes. Furthermore, the implementation of strict policies by regional governments to maintain the safety, efficacy, and quality of medical products and instruments is contributing to the market growth. Along with this, the presence of key players in the region that are equipped with resources and expertise to drive product development, marketing, and sales is positively influencing the market growth.
Competitive Landscape:
The top companies in the FISH probe market are actively engaged in developing new products by incorporating advanced technologies to improve the accuracy and reliability of results. In line with this, the significant investment in research and development (R&D) projects to expand their portfolio, gain competitive advantages, and meet rising consumer demand is favoring the market growth. Furthermore, several key players are adopting targeted marketing strategies by designing customized products that meet the unique requirements of users. Additionally, the increasing collaboration between leading companies, research institutions, and academic centers to jointly develop new FISH probe technologies, validate products through clinical studies, and strengthen market presence is contributing to the market growth. Moreover, several product manufacturers are establishing distribution channels, partnerships, and subsidiaries across the globe to expand their business and attract a new customer base.
The report has provided a comprehensive analysis of the competitive landscape in the global fluorescent in situ hybridization (FISH) probe market. Detailed profiles of all major companies have also been provided. Some of the key players in the market include:
- Abnova Corporation
- Agilent Technologies Inc.
- Biocare Medical LLC
- Biosearch Technologies (LGC Ltd.)
- Creative Biolabs
- F. Hoffmann-La Roche Ltd. (Roche Holding AG)
- Genemed Biotechnologies Inc. (Sakura Finetek USA Inc.)
- Merck KGaA
- Oxford Gene Technology (Sysmex Corporation)
- PerkinElmer Inc.
- ThermoFisher Scientific Inc.
Recent Developments:
- In November 2022, Biocare Medical LLC announced the acquisition of Empire Genomics, a company that produces fluorescence in situ hybridization (FISH) probes designed and optimized for specific genes, diseases, or regions across the entire mouse and human genomes.
- In March 2023, Oxford Gene Technology (Sysmex Corporation) announced that eight of its CytoCell FISH probes had been certified for clinical use in line with Europe's In Vitro Diagnostics Regulation (IVDR).
- In April 2023, Agilent Technologies Inc. expanded its portfolio of SureFISH probes. This move was aimed at creating the largest offering of oligonucleotide-based fluorescent in situ hybridization (FISH) assays on the market.
Fluorescent in Situ Hybridization (FISH) Probe Market Report Scope:
Report Features |
Details |
Base Year of the Analysis |
2023 |
Historical Period |
2018-2023 |
Forecast Period |
2024-2032 |
Units |
US$ Million |
Scope of the Report |
Exploration of Historical and Forecast Trends, Industry Catalysts and Challenges, Segment-Wise Historical and Predictive Market Assessment:
- Type
- Probe Type
- Technology
- Application
- End-User
- Region
|
Types Covered |
- DNA
- RNA: mRNA, miRNA, Others
|
Probe Types Covered |
Locus Specific Probes, Alphoid/Centromeric Repeat Probes, Whole Chromosome Probes |
Technologies Covered |
Flow FISH, Q FISH, Others |
Applications Covered |
Cancer, Genetic Diseases, Others |
End-Users Covered |
Research Organizations, Diagnostic Centers, Others |
Regions Covered |
Asia Pacific, Europe, North America, Latin America, Middle East and Africa |
Countries Covered |
United States, Canada, Germany, France, United Kingdom, Italy, Spain, Russia, China, Japan, India, South Korea, Australia, Indonesia, Brazil, Mexico |
Companies Covered |
Abnova Corporation, Agilent Technologies Inc., Biocare Medical LLC, Biosearch Technologies (LGC Ltd.), Creative Biolabs, F. Hoffmann-La Roche Ltd. (Roche Holding AG), Genemed Biotechnologies Inc. (Sakura Finetek USA Inc.), Merck KGaA, Oxford Gene Technology (Sysmex Corporation), PerkinElmer Inc., ThermoFisher Scientific Inc., etc. |
Customization Scope |
10% Free Customization |
Report Price and Purchase Option |
Single User License: US$ 3899
Five User License: US$ 4899
Corporate License: US$ 5899 |
Post-Sale Analyst Support |
10-12 Weeks |
Delivery Format |
PDF and Excel through Email (We can also provide the editable version of the report in PPT/Word format on special request) |
Key Questions Answered in This Report:
- How has the global fluorescent in situ hybridization (FISH) probe market performed so far, and how will it perform in the coming years?
- What are the drivers, restraints, and opportunities in the global fluorescent in situ hybridization (FISH) probe market?
- What is the impact of each driver, restraint, and opportunity on the global fluorescent in situ hybridization (FISH) probe market?
- What are the key regional markets?
- Which countries represent the most attractive fluorescent in situ hybridization (FISH) probe market?
- What is the breakup of the market based on the type?
- Which is the most attractive type in the fluorescent in situ hybridization (FISH) probe market?
- What is the breakup of the market based on probe type?
- Which is the most attractive probe type in the fluorescent in situ hybridization (FISH) probe market?
- What is the breakup of the market based on technology?
- Which is the most attractive technology in the fluorescent in situ hybridization (FISH) probe market?
- What is the breakup of the market based on the application?
- Which is the most attractive application in the fluorescent in situ hybridization (FISH) probe market?
- What is the breakup of the market based on the end-user?
- Which is the most attractive end-user in the fluorescent in situ hybridization (FISH) probe market?
- What is the competitive structure of the global fluorescent in situ hybridization (FISH) probe market?
- Who are the key players/companies in the global fluorescent in situ hybridization (FISH) probe market?
Key Benefits for Stakeholders:
- IMARC’s report offers a comprehensive quantitative analysis of various market segments, historical and current market trends, market forecasts, and dynamics of the fluorescent in situ hybridization (FISH) probe market from 2018-2032.
- The research study provides the latest information on the market drivers, challenges, and opportunities in the global fluorescent in situ hybridization (FISH) probe market.
- The study maps the leading, as well as the fastest-growing, regional markets. It further enables stakeholders to identify the key country-level markets within each region.
- Porter's five forces analysis assist stakeholders in assessing the impact of new entrants, competitive rivalry, supplier power, buyer power, and the threat of substitution. It helps stakeholders to analyze the level of competition within the fluorescent in situ hybridization (FISH) probe industry and its attractiveness.
- Competitive landscape allows stakeholders to understand their competitive environment and provides an insight into the current positions of key players in the market.